
ft HAT
a �schertechnik compatible HAT for the Raspberry Pi

Manual

Dr.-Ing. Till Harbaum

June 30, 2020

© 2019-2020 Dr.-Ing. Till Harbaum <till@harbaum.org>

Project homepage: http://tx-pi.de
Forum: https://forum.ftcommunity.de/

mailto:till@harbaum.org
http://tx-pi.de
https://forum.ftcommunity.de/

Contents

1 Introduction 4
1.1 Raspberry Pi . 4

1.1.1 GPIO port . 4
1.1.2 Raspberry Pi compared to �schertechnik TXT controller . 5

1.2 What's in the package? . 6

2 The ft HAT 7
2.1 Power supply . 8

2.1.1 Power indicator LED . 9
2.1.2 Raspberry Pi power consumption . 9
2.1.3 Power jumper settings . 9
2.1.4 Power on . 9
2.1.5 Raspberry Pi auto power o� con�guration . 10

2.2 I2C . 10
2.2.1 Enabling I2C on the Raspberry Pi . 10
2.2.2 External I2C ports . 12
2.2.3 3.3V I2C port . 12
2.2.4 5V I2C port . 13

2.3 9V inputs and outputs . 13
2.3.1 Inputs . 14
2.3.2 Outputs . 14

2.4 Using a touch display HAT . 15

3 Programming the ft HAT 17
3.1 I2C . 17

3.1.1 Internal real time clock . 17
3.1.2 Internal EEPROM memory . 19
3.1.3 �schertechnik environmental sensor 167358 . 21
3.1.4 �schertechnik combi sensor 158402 . 22
3.1.5 Third party sensors . 23

3.2 Programming the �schertechnik inputs and outputs . 24
3.2.1 Command line . 24
3.2.2 Python . 25

4 The TX Pi project 27
4.1 Software and applications . 27
4.2 Display . 28
4.3 Case designs . 28

Chapter 1

Introduction

The ft HAT is an addon for the popular Raspberry Pi computer. It provides electrical compatibility between the world of
the �schertechnik construction toy with its 9 volt powered motors, lamps etc and the Raspberry Pi.

1.1 Raspberry Pi

The Raspberry Pi is a full featured credit card sized Linux computer sold at a very low price. It's primarily targeted at the
educational market but due to its low price and simple usage it has been widely adopted by the maker community.

Figure 1.1: The Raspberry Pi version 3

The Raspberry Pi is being sold since 2012 and has reached its fourth version in 2019. The most popular versions of the
Raspberry Pi include a multi core gigahertz arm CPU, up to 4GB RAM, several USB connectors incl. USB 3.0, Ethernet,
WiFi and Bluetooth and HDMI. They can be powered from ubiquitous USB power supplies and are very a�ordable.

1.1.1 GPIO port

Unlike most regular computers the Raspberry Pi includes a so-called 40 pin GPIO header (General Purpose Input and Output)
as depicted in �gure 1.2 which allows to connect arbitrary hardware ranging from various sensors over small touchscreen
displays to powerful motor drivers and similar.

The GPIO port allows to extend the Raspberry Pi using so-called HAT's. HAT stands for �Hardware attached on top� and
describes hardware devices which have the mechanical footprint of the Raspberry Pi and which can be plugged directly into
the GPIO connector and which then sit on top of the Raspberry Pi. Some of these boards can even be stacked so more
than one HAT can be connected at a time. The ability to use more than one HAT requires careful selection of the HATs as
the connections on the GPIO port can usually not be shared between several HATs. HATs being used simultaneously thus
usually need to used separate signals of the GPIO port.

1.1. Raspberry Pi 5

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

3.3V
GPIO02
GPIO03
GPIO04

GND
GPIO17
GPIO27
GPIO22
3.3V

GPIO10
GPIO09
GPIO11

GND
GPIO00
GPIO05
GPIO06
GPIO13
GPIO19
GPIO26

GND

5V
5V
GND
GPIO14
GPIO15
GPIO18
GND
GPIO23
GPIO24
GND
GPIO25
GPIO08
GPIO07
GPIO01
GND
GPIO12
GND
GPIO16
GPIO20
GPIO21

Power
I²C SDA1
I²C SCL1
GPIO_GCLK

Power
GPIO_GEN0
GPIO_GEN2
GPIO_GEN3

Power
SPI_MOSI
SPI_MISO
SPI_SCK
Power
I²C ID

PCM_FS

Power

Power
Power
Power
TXD0
RXD0
GPIO_GEN1
Power
GPIO_GEN4
GPIO_GEN5
Power
GPIO_GEN6
SPI_CS0
SPI_CS1
I²C ID
Power

Power

PCM_DIN
PCM_DOUT

regular usage

(a) GPIO pinout (b) A display HAT

Figure 1.2: GPIO extension on the Raspberry Pi

1.1.2 Raspberry Pi compared to �schertechnik TXT controller

Since 2014 �schertechnik is selling the TXT controller, a Linux based computing device with built-in 2.4� touchscreen and
�schertechnik compatible power supply, inputs and outputs. Lego is also selling the similar EV3 controller for their system.

The following table compares the EV3, the TXT, the Raspberry Pi4 and the TX Pi1.

EV3 TXT Raspberry Pi4 TX Pi

CPU type TI-AM1808-Sitara TI-AM3359-Sitara Broadcom BCM2711
Core types 32 bit Cortex A8 32 bit Cortex A8 64 bit Cortex A72
No of CPU Cores 1 1 4
CPU clock 300 MHz 600 MHz 1500 MHz
Memory type DDR2 DDR3 DDR4
Memory size 64 MB 256 MB 4 GB
On board �ash 16 MB 128 MB -
USB host 1 * USB 2.0 1 * USB 2.0 2 * USB 2.0, 2 * USB 3.0
USB device 1 * USB 2.0 1 * USB 2.0 -
WiFi - SDIO: 802.11n 2.4 GHz SDIO: 802.11ac (2.4 & 5 GHz, 1x1)
Bluetooth BT 4.0 BT 4.1 incl. BLE BT 5.0 incl. BLE
Ethernet - - Gigabit Ethernet
Display 178Ö128 mono 2.4� 240x320 TFT - 3.5� 320x480 TFT
Touchscreen controller - software - XPT2046
Display controller - ILI9341 - ILI9486/ILI9488
Power supply 6*AA (LR6) ft 9V= 2.5A USB-C 5V 3A ft 9V= 2.5A
I²C Lego custom 3.3V 3.3V 3.3V & 5V
9V analogue inputs 3 8 - -
9V digital inputs - 4 - 4
9V motor outputs 3 4 - 2
Price est. 200¿ 200¿ 35¿ 100¿

The TXT is most useful when it comes to control complex �schertechnik models and when focus lies on the interconnection
with many �schertechnik components.

The Raspberry Pi on the other hand has a huge advantage with respect to computing power. Whenever the focus lies on
computing the Raspberry Pi is the right choice. If more �schertechnik compatible connections are required in a Raspberry Pi
setup then one or more ftDuino's2 can be attached to the Raspberry Pi via USB or I2C.

1TX Pi = Raspberry Pi4 + touch display + ft HAT
2ftDuino, http://ftduino.de

http://ftduino.de

6 Chapter 1. Introduction

1.2 What's in the package?

Figure 1.3: ft HAT package contents

The ft HAT comes with:

A: the ft HAT itself

B: the ft HAT breakout board

C: the ft HAT extension cable

D: a set of screws and bolts for the ft HAT

The extension cable connects the ft HAT to the breakout board. The screw and bolt set allows to �rmly mount the ft HAT
on top of the Raspberry Pi and optionally supports a display.

Chapter 2

The ft HAT

The ft HAT is a so called �HAT� for the Raspberry Pi. HAT stands for �Hardware attached on top� and describes a piece
of hardware which can be attached to the top of the Raspberry Pi using its 40 pin GPIO header.

Figure 2.1: The ft HAT mounted on a Raspberry Pi

The ft HAT attaches to the top of the GPIO header and extends the pins on its own top to allow for further HATs to be
stacked on top of the ft HAT. The ft HAT makes intensive use of the signals exposed by the Raspberry Pi on its 40 pin
expansion connector. Care has thus to be taken if multiple HATs are being used at once.

The ft HAT was designed to address the following topics when using the Raspberry Pi in combination with the �schertechnik
construction toy:

� The Raspberry Pi is typically powered via a USB connector from a 5V power source like a phone charger. The ft HAT
allows the Pi to be powered from a regular 9V �schertechnik power source instead.

� The Raspberry Pi cannot control it's own power source. This means that a raspberry pi cannot completely switch
o� by itself. The ft HAT makes the power supply controllable by the Raspberry Pi allowing it to save power e.g. in
battery driven setups.

� The GPIO pins of the Raspberry Pi are not electrically compatible with �schertechnik sensors and actors. The ft HAT
gives the Raspberry Pi four �schertechnik compatible digital inputs and two �schertechnik compatible analog motor
outputs.

� I2C sensors are popular in the �schertechnik world as well as in the Raspberry Pi community. The ft HAT provides
the Raspberry Pi with two �schertechnik compatible I2C ports. The 10 pin 3.3V port is compatible with the EXT

8 Chapter 2. The ft HAT

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

3.3V
GPIO02
GPIO03
GPIO04

GND
GPIO17
GPIO27
GPIO22
3.3V

GPIO10
GPIO09
GPIO11

GND
GPIO00
GPIO05
GPIO06
GPIO13
GPIO19
GPIO26

GND

5V
5V
GND
GPIO14
GPIO15
GPIO18
GND
GPIO23
GPIO24
GND
GPIO25
GPIO08
GPIO07
GPIO01
GND
GPIO12
GND
GPIO16
GPIO20
GPIO21

Power
I²C SDA1
I²C SCL1
GPIO_GCLK

Power
GPIO_GEN0
GPIO_GEN2
GPIO_GEN3

Power
SPI_MOSI
SPI_MISO
SPI_SCK
Power

I²C SDA0

PCM_FS

Power

Power
Power
Power
TXD0
RXD0
GPIO_GEN1
Power
GPIO_GEN4
GPIO_GEN5
Power
GPIO_GEN6
SPI_CS0
SPI_CS1
I²C SCL0
Power

Power

PCM_DIN
PCM_DOUT

3.3V from Pi
 I²C EXT SDA
 I²C EXT SCL

POFF
GND

(TP_IRQ)

M2/AIN2
3.3V from Pi

(LCD_SI)
(TP_SO)

(LCD_SCK)
GND

I²C INT SDA
M1/BIN1
M1/BIN2
M1/PWM1
Mx/STBY

GND

5V to Pi
5V to Pi
GND
TxD
RxD
M2/PWM0
GND
M2/AIN1
(LCD_RS)
GND
(RESET)
(LCD_CS)
(TP_CS)
I²C INT SCL
GND
I1
GND
I2
I3
I4

TX Pi HAT usage
(signals reserved for use by separate SPI display)

regular usage

Figure 2.2: ft HAT usage of extension pins on the Raspberry Pi

port of the �schertechnik TXT and like this carries the console UART signals besides the I2C signals. The additional
6 pin port implements a 5V I2C bus and is compatible with the �schertechnik TX controller as well as the ftDuino
and various other third party add on's. Both, the 5V and the 3.3V port can be used at the same time. But since they
share the same logical I2C bus they also share the same I2C address space.

2.1 Power supply

One of the main features of the ft HAT is it's ability to power the Raspberry Pi from most regular �schertechnik power
sources. Power sources can either be connected via the 4mm DC jack or via the pair of �schertechnik 2.5mm jacks left of
the DC jack as depicted in �gure 2.3.

Warning: The 9V �schertechnik operates with are a potential threat to the Raspberry Pi. The inputs and outputs of ft HAT
meant to be connected to 9V devices are protected against these voltages. But the Raspberry Pi itself and some of the
components on the ft HAT are not. Be careful when using the Raspberry Pi and/or the ft HAT without case and never
let any part of the Raspberry Pi get into direct contact with the 9V from the �schertechnik side as this may damage the
Raspberry Pi and the ft HAT.

S
K

3
4

S
K
3
4

C N

9V DC from
ft power supply

9 V DC to
e.g. sensors

+
-

(a) �schertechnik power supply

S
K

3
4

S
K
3
4

C N

9V DC e.g. from
ft battery pack

+
-

(b) �schertechnik battery

Figure 2.3: Power supply options of the ft HAT

Supported and tested power sources are:

� �schertechnik power supply 505287 as delivered by �schertechnik for the TXT controller.

� Most stabilized 9V DC power supplies with matching adapters. The power supply should be able to deliver at least
2.5A.

� The �schertechnik 9V battery case using a regular disposable 9V battery.

2.1. Power supply 9

� The �schertechnik rechargeable battery pack.

Both power supply options are protected against reversed polarity. The DC jack is additionally protected against reverse
current �ow from the ft HAT into the DC jack.

The 2.5mm �schertechnik jacks are not protected against reversed current �ow as they are supposed to be used in both
directions. They can either be used to power the ft HAT from an external power source as depicted in �gure 2.3(b). Or
when powered from the DC jack they can be used to provide power to external devices like sensors as depicted in �gure
2.3(a).

Care has thus to be taken to not connect a battery and the DC power source at the same time. In this case the battery
would be sourced from the power supply and the battery will likely be damaged.

2.1.1 Power indicator LED

The ft HAT includes a power LED below the power button. This LED will light up whenever the ft HAT's power supply is
enabled. When this LED is lit then the attached Raspberry Pi is also powered.

2.1.2 Raspberry Pi power consumption

The latest Raspberry Pi with a few peripherals connected draws at most 3A at 5V under full load. The power supply on
the ft HAT was designed to deliver this amount of power. Therefore more than 1.6A on 9V side may be required under full
load. In most cases and under regular load the Raspberry Pi typically draws at most around 500mA on 9V via the ft HAT.

E.g. the �schertechnik rechargeable battery pack is rated at 1500mAh. It will thus allow to power the Raspberry Pi for
about an hour under full load or nearly three hours under normal load. The �schertechnik power supply 505287 delivers up
to 2.5A and easily power the Raspberry Pi even under full load. Some care still has to be taken as additional motors and
lamps on the �schertechnik model may also consume signi�cant power.

2.1.3 Power jumper settings

The power supply feature of the ft HAT can be con�gured using two jumpers on the board. These jumpers control the
power-on behavior of the setup:

auto on If this jumper is installed then the Raspberry Pi will automatically be power on whenever power is applied to the
ft HAT. If this jumper is removed then the ft HAT will stay o� when power is applied and the power button needs to
be used to power on the Raspberry Pi.

permanent on Installing this jumper overdrives any power control and if it's set the power supply will be permanently
enabled. The Raspberry Pi is then not able to power itself o�. This jumper is also needed if the ft HAT is being used
stand alone without Raspberry Pi.

Usually the auto on jumper is being installed and and the permanent on jumper is not installed.

2.1.4 Power on

There are several ways to control the power supply of the ft HAT. All of these can only be used to enable the power supply.
If any one of these is enabled then the power supply will be on.

permanent on jumper If this jumper is installed the power supply will be on regardless of any other signal.

Raspberry Pi GPIO04 This GPIO pin is controlled by the Raspberry Pi and is used to keep power on during regular
operation. The Raspberry Pi can be con�gured to use this pin to release the power supply once the PI is shut down.

Power button The power button enables the power supply as long as the power button is being pressed. In a typical setup
the Raspberry Pi will take over power control via GPIO04 once the power button is released.

Applying power If the auto on jumper is installed applying power will enabled the power supply for a short period of time.
In a typical setup the Raspberry Pi will take over power control via GPIO04 once power is stable for some time.

10 Chapter 2. The ft HAT

RTC The on board real time clock (RTC) can activate the power supply using its interrupt output. This alarm usually needs
to be acknowledged by the Raspberry Pi via I2C. Otherwise this signal stays active and will keep the Raspberry Pi
powered even if it's shut down.

If the ft HAT is powered o� it goes into a low power state and the power consumption is less than 30 µA. The RTC is still
enabled during power down in order to keep the time and to be able to power the system on via its alarm triggered interrupt
output.

2.1.5 Raspberry Pi auto power o� con�guration

The ft HAT gives the Raspberry Pi control over it's own power supply. During regular operation the ft HAT power supply
will be powered on for a short period of time by e.g. the power button. This will immediately wake up the Raspberry Pi
itself which takes over and keeps the ft HAT power supply on via its GPIO04 pin. The Raspberry Pi will do this by default
and without further con�guration due to a Raspberry Pi internal pull-up resistor on this GPIO pin.

The Raspberry Pi can be con�gured to release this pin on shut down allowing it to disable its own power supply once it has
successfully �nished its shut down sequence. This feature is not enabled by default. In order to allow the Raspberry Pi to
power o� on shut down the following line needs to be added to the /boot/config.txt �le on the Raspberry Pi.

dtoverlay=gpio-poweroff,gpiopin=4,active_low=1

2.2 I2C

The I2C bus is a technology to connect electronic components. On the ft HAT it's used for two purposes. It's internally
used to compontents of the ft HAT to the Raspberry Pi and it's used to connect external components like certain sensors
to the ft HAT.

The Raspberry Pi provides access to two I2C busses on its 40 pin GPIO expansion connector. The ft HAT makes use of one
of these busses for internal usage and the other one is used for external devices. This separation avoids interference between
internal and external devices. The I2C bus i2c-0 is present on pins 27 and 28 (GPIO00 and GPIO01) while a second I2C
bus i2c-1 is provided on pins 3 and 5 (GPIO02 and GPIO03) of the expansion connector as depicted in �gure 2.2.

The I2C busses are named i2c-0 and i2c-1. Bus i2c-0 is used for the internal devices of the ft HAT while i2c-1 is being
used for the external devices.

2.2.1 Enabling I2C on the Raspberry Pi

By default I2C is not enabled on typical Raspberry Pi operating system setups like Raspbian.

i2c-1

The bus i2c-1 can be enabled using the standard con�guration utility raspi-config. This is invoked using sudo:

sudo raspi-config

On the following main menu select 6 - Interfacing Options. In the submenu displayed afterwards I2C can be enabbled
as depicted in �gure 2.4.

i2c-0

The bus i2c-0 is not enabled via the I2C con�guration in raspi-config. Instead an additional line has to be added to
the �le /boot/config.txt �le on the Raspberry Pi in order to enable it:

dtparam=i2c_vc=on

Afterwards a reboot of the Raspberry Pi is required before both busses are available. For initial tests the tool i2cdetect
needs to be installed using e.g. the following command:

2.2. I2C 11

Figure 2.4: Enabling i2c-1 in the raspi-config tool

sudo apt-get install -y i2c-tools

Once installed i2cdetect can be used to check the availability of both busses:

$ i2cdetect -l

i2c-0 i2c bcm2835 I2C adapter I2C adapter

i2c-1 i2c bcm2835 I2C adapter I2C adapter

Furthermore this tool can be used to check for the internal and external devices on the two busses.

On the internal bus i2c-0 two devices should show up under addresses 0x50 and 0x68:

$ sudo i2cdetect -y 0

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

These are the internal real time clock at address 0x68 and the con�guration EEPROM under address 0x50.

The external bus can ales be check for attached devices. Typically nothing will be connected at this point and the result
would not yield any addresses. But with e.g. the �schertechnik environmental sensor and the �schertechnik combi sensor
attached the result would look like this:

$ i2cdetect -y 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: 10 -- -- -- -- -- -- -- 18 -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- 76 --

The fact that four devices show up in this case is caused by the fact that the combi sensor is a combination of three devices
showing up at addresses 0x10, 0x18 and 0x68. The envronmental sensor shows up at address 0x76.

Also note that one part of the combi sensor shows up at the same addess 0x68 on i2c-1 that is used by the internal RTC
on i2c-0. While it would technically feasible to use only one bus for all internal and external devices these two devices
would have their addresses colliding and thus rendering both devices inaccessible.

12 Chapter 2. The ft HAT

2.2.2 External I2C ports

The ft HAT exposes i2c-1 port via two connectors as depicted in �gures 2.5 and 2.7. The two connectors are compatible
to the ports provided by the original �schertechnik TXT and TX controllers as well as the I2C port of the ftDuino.

2.2.3 3.3V I2C port

The ten pin I2C port of the ft HAT depicted in �gure 2.5 is compatible to the EXT port of the �schertechnik TXT controller.

Tx
D

R
xD

S
D
A

G
N
D

S
C
L

Figure 2.5: The 3.3V I2C port of the ft HAT

All signals on this port use a 3.3V signal level and should be connected to 3.3V signals only. Like the EXT connector of the
TXT this port carries a I2C bus as well as the console TxD (transmit data) and RxD (receive data) of a serial console. Both
the I2C signals as well as the console signals are connected directly to the according pins of the Raspberry Pi's expansion
header. Over voltages and short circuits on these signals may therefore harm the Raspberry Pi.

Figure 2.6: Combi sensor connected to the ft HAT

The �schertechnik sensors typically require an external 9V power supply. This can be taken from the ft HAT as explained
in �gure 2.3(a) and as shown in �gure 2.6.

The serial console

The ft HAT just like the �schertechnik TXT controller provides access to the internal serial console of the Linux system
through pins 9 and 10 of the ten pin I2C port. On both systems a adapter using e.g. a USB to 3.3v UART converter may
be used to get access to the serial console of the TXT or the Raspberry Pi.

This console usually runs at 115200 bit/s and can be accessed from the PC side using regular terminal emulator software
like Teraterm (Windows) or Minicom (Linux).

2.3. 9V inputs and outputs 13

2.2.4 5V I2C port

The six pin I2C port of the ft HAT depicted in �gure 2.7 is compatible with the EXT port of the �schertechnik TX controller
and the I2C port of the ftDuino. It is connected via a level shifter to the same I2C bus i2c-1 as the ten pin TXT compatible
port. The level shifter provides 5 volt signal levels on the I2C signals. This port should therefore be used whenever a 5V
I2C device is to be connected to the ft HAT.

S
D
A

G
N
D

S
C
L

+
5V

Figure 2.7: The 5V I2C port of the ft HAT

The same logical I2C bus is present on both connectors. From the Raspberry Pi's point of view these port are indistinguishable
and they e.g. share the same address space.

Figure 2.8: Third party mini servo adapter connected to the ft HAT

The six pin port also provides a 5V power source. This port can source up to 250mA for external devices like sensors or e.g.
a ftDuino connected via I2C. The 5V connection on the six pin port does now allow to power the ft HAT or the attached
Raspberry Pi. A protection diode makes sure that any external power source connected to this port is not being used. This
protects any potential external power source like the ftDuino from overload by the up to 3A current the Raspberry Pi draws
under normal operating conditions.

2.3 9V inputs and outputs

The ft HAT was designed to integrate the Raspberry Pi into the �schertechnik system. Besides a �schertechnik compatible
power supply it also provides a few �schertechnik compatible inputs and output which can be used to connect switches,
lamps, motors and similar devices from the �schertechnik system with the ft HAT.

The ft HAT was designed to be stacked on top of the Raspberry Pi and below a optional display add-on. Thus connectors
can only be placed on the sides of the ft HAT which signi�cantly limits the available space.

Thus all �schertechnik compatible connections have been moved to a single 16 pin IO connector as depicted in �gure 2.9.

A cable carrying a matching connector on one end and regular 2.5mm �schertechnik plugs on the other can directly be
connected to this port.

14 Chapter 2. The ft HAT

M
2A

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

M
1A

M
2B

M
1B

I1I2I3I4 +
9V

+
9V

(a) ft HAT IO connector

+9V +9V M1 M2 I2I1 I3 I4

(b) optional breakout board

Figure 2.9: �schertechnik IO connections on the ft HAT

Figure 2.10: Connecting �schertechnik to the breakout board

To make usage easier the ft HAT comes with a breakout board carrying the regular �schertechnik sleeves which can be used
with the regular 2.5mm �schertechnik plugs.

2.3.1 Inputs

The ft HAT features four �schertechnik compatible inputs I1, I2, I3 and I4. These are digital inputs and can be used to
connect buttons, switches and the �schertechnik photo transistor. These inputs are digital only (limited to on and o�) and
cannot read analogue voltages or resitances since the Raspberry Pi does not provide analog inputs on its GPIO port.

The inputs are protected against over voltage and can directly be connected to any �schertechnik power source. The regular
use case is to connect the input against ground.

Input Pin GPIO
I1 32 GPIO12

I2 36 GPIO16

I3 38 GPIO20

I4 40 GPIO21

The four inputs I1 to I4 are mapped to the Raspberry Pi's pins GPIO12, GPIO16, GPIO20 and GPIO21 as depicted in �gure
2.2.

2.3.2 Outputs

The ft HAT features two �schertechnik compatible motor outputs M1 and M2. Each motor output consists of two individual
outputs. The outputs can both be adjusted in polarity allowing to e.g. control the motors direction and the speed can be
adjusted using a separate PWM signal.

2.4. Using a touch display HAT 15

The motor outputs are driven by a TB6612 dual motor bridge. The input pins of the TB6612 are mapped to the Raspberry Pi's
GPIO pins as follows:

M1 M2
IN1 BIN1/GPIO05 AIN1/GPIO23
IN2 BIN2/GPIO06 AIN2/GPIO22
PWM PWM1/GPIO13 PWM0/GPIO18
STBY GPIO19

The state of the two motor outputs can be controlled from the Raspberry Pi by driving GPIO05, GPIO06 and GPIO13

for M1 and GPIO23, GPIO22 and GPIO18 for M2. The STBY signal is shared by both outputs and is controlled from the
Raspberry Pi's GPIO19.

The four pins on one channel control the state of one motor output as follows:

STBY IN1 IN2 PWM state
0 x x x standby (high impedance)
1 0 0 1 stop (high impedance)
1 1 1 x short brake (both outputs low)
1 0 1 1 turn CCW (one output low, one high)
1 0 1 0 short brake (both outputs low)
1 1 0 1 turn CW (one output high, one low)
1 1 0 0 short brake (both outputs low)

More information about programming the inputs and outputs is being given in section 3.

2.4 Using a touch display HAT

The ft HAT does not necessarily need to be used with a display. It can be used headless (without any display) or like most
regular Raspberry Pi setups it may also be used with a regular screen connected to the HDMI.

But man use cases make more sense a screen. Many screens available for the Raspberry Pi can also be made to work with
the ft HAT. But there are several limitations:

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

3.3V
GPIO02
GPIO03
GPIO04

GND
GPIO17
GPIO27
GPIO22
3.3V

GPIO10
GPIO09
GPIO11

GND
GPIO00
GPIO05
GPIO06
GPIO13
GPIO19
GPIO26

GND

5V
5V
GND
GPIO14
GPIO15
GPIO18
GND
GPIO23
GPIO24
GND
GPIO25
GPIO08
GPIO07
GPIO01
GND
GPIO12
GND
GPIO16
GPIO20
GPIO21

Power
I²C SDA1
I²C SCL1
GPIO_GCLK

Power
GPIO_GEN0
GPIO_GEN2
GPIO_GEN3

Power
SPI_MOSI
SPI_MISO
SPI_SCK
Power
I²C ID

PCM_FS

Power

Power
Power
Power
TXD0
RXD0
GPIO_GEN1
Power
GPIO_GEN4
GPIO_GEN5
Power
GPIO_GEN6
SPI_CS0
SPI_CS1
I²C ID
Power

Power

PCM_DIN
PCM_DOUT

GND
TP_IRQ

LCD_SI
TP_SO

LCD_SCK
GND

GND

5V
5V
GND

GND

LCD_RS
GND
RESET
LCD_CS
TP_CS

GND

GND

Reserved for display

regular usage

(a) GPIO pins reserved for display use (b) Bottom of Waveshare 3.5� display

Figure 2.11: GPIO usage with display

As shown in �gure 2.11 several pins of the GPIO connector have been reserved for use with a display HAT. This is due to
the fact that most GPIO pins are expected to be exclusively used by a certain hardware. It thus has to be asured that the
pins used by a display are not used by another addon and vice versa.

16 Chapter 2. The ft HAT

The di�erent displays available for the Raspberry Pi di�er signi�cantly in the way they make use of the Raspberry Pi's GPIO
pins. The popular Waveshare 3.5� touchscreen displays with 320x480 pixels resolution have been choosen as a reference.
Several 3.5 inch third party displays are also compatible with this setup. Displays known to be compatible include:

Waveshare 3.5inch RPi LCD (A) Various compatible third party displays are available.

Waveshare 3.5inch RPi LCD (B) This display di�ers slightly in the display technology used and it requires a di�erent
driver but it is otherwise compatible with the (A) version and with the default pin usage of the ft HAT.

Waveshare 4.0inch RPi LCD (A) This display is slghtly bigger than the 3.5 inch version but is otherwise compatible and
features the same resolution and the same pin usage.

Waveshare 3.5inch RPi LCD (C) This is a high speed version of the (A) model. The MHS-3.5inch RPi Display is
known to be compatible with this.

In general all displays able to work with the default drivers for the Waveshare displays mentioned above are compatible with
the pin usage of the ft HAT.

Figure 2.12: A 3.5 inch touch screen mounted on top of the ft HAT

Chapter 3

Programming the ft HAT

The ft HAT extends existing interfaces of Raspberry Pi to make them accessible for �schertechnik usage. Part of these
extensions are accessed via I2C and part of them is accessed using the Raspberry Pi's GPIO pins. This chapter explains how
to access these features.

Most of the code examples in this chapter use either Linux command line tools or are written in the Python programming
language. Other programming languages can usually be used equally well. The internet usually provides examples showing
how to access the I2C busses or the GPIO ports of the Raspberry Pi and used by the ft HAT in other languages. The Python
examples of this section can be used as a template for other languages as well.

3.1 I2C

The two I2C busses used by the ft HAT on the Raspberry Pi are i2c-0 and i2c-1 which are both available on the 40 pin
GPIO port as depicted in �gure 2.2. Before these ports can be accessed by software they need to be enabled as explained
in section 2.2.1.

The ft HAT itself already contains on-board I2C peripherals. Further I2C peripherals can be connected externally either via
the 10 pin 3.3V port or via the 6 pin 5V port.

3.1.1 Internal real time clock

As an internal device the DS3231 real time clock (RTC) is connected to the internally used I2C bus i2c-0 and shows up
under address 0x68. Since the DS3231 is supported by a standard I2C kernel driver it can be made available to the system
using the Linux on-board tools and drivers.

Using the kernel driver

Using the kernel driver has the major disadvantage that the alarm controlled wakeup/powerup mechanism of the ft HAT is
not suppored by this. In order to use this feature follow the programming instructions in the next section instead.

Since there is no reliable way of auto detecting hardware on the I2C bus the Linux kernel needs to be told that there is a
DS3231 device at address 0x68 of bus i2c-0 using the following commands:

$ sudo modprobe rtc_ds1307

$ echo ds3231 0x68 | sudo tee -a /sys/class/i2c-adapter/i2c-0/new_device

ds3231 0x68

Afterwards the RTC should show up in the sys �le system and the date and time can be read:

$ cat /sys/class/rtc/rtc0/date

2000-01-01

$ cat /sys/class/rtc/rtc0/time

18 Chapter 3. Programming the ft HAT

00:10:15

The command hwclock can then be used to read the time from the RTC:

$ hwclock -r

2000-01-01 01:11:08.923619+0100

It's obvious that the RTC does not know the correct time. In most cases the Raspberry Pi will know the correct time already
from a network service. This time can be written into the RTC:

$ hwclock -w

$ hwclock -r

2019-07-01 09:22:48.677249+0200

The time can be moved from the RTC back to the system time using the hwclock -s command.

Please be aware that the RTC does not come with a seperate power supply. If the ft HAT is disconnected from a power
supply the time and date stored on the RTC will be reset to 2000-01-01 00:00:00 UTC. But the date and time is kept while
the ft HAT is being connected to a power source even if the main power supply inside the ft HAT is switched o� and while
the Raspberry Pi is powered down. This allows to use the RTC to power up the Raspberry Pi at a given time.

Unloading the kernel driver

Any direct programming approach from e.g. Python will not work if the kernel driver is loaded and has gained exclusive
access to the chip.

In this case the i2cdetect -y 0 command will show UU instead of 68 if the address is blocked by a system driver:

$ i2cdetect -y 0

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

In this case the driver can be unloaded:

$ echo 0x68 | sudo tee -a /sys/class/i2c-adapter/i2c-0/delete_device

Afterwards the RTC is available for direct programming and the alarm can be set from programs like the Python example.

Unfortunately the Linux kernel driver used this way does not provide access to the alarm functions of the RTC which are
required to wake up the Raspberry Pi timed by the RTC alarm. Thus using the linux kernel driver for the RTC is not
recommended. Instead the RTC should be accessed directly bypassing any RTC driver as outlined in the following section.

Programming the RTC in Python

Python like most other programming languages provides methods to directly access the I2C busses and thus send arbitrary
commands to any connected I2C device like the RTC. A matching Python library for the DS3231 RTC can e.g. be found
at github1.

This library can be used from within any Python program:

ds3231 = DS3231.DS3231(0, 0x68)

set RTC time from system time

ds3231.write_now()

set alarm one minute in the future

1DS3231.py: https://github.com/harbaum/cfw-apps/tree/master/packages/tx-pi-hat-test

https://github.com/harbaum/cfw-apps/tree/master/packages/tx-pi-hat-test

3.1. I2C 19

ds3231.setAlarm(datetime.datetime.now() + datetime.timedelta(minutes=1))

shut down pi to let it wake up again

call(["sudo", "poweroff"])

A second snippet of code is needed once the RTC has woken up the Raspberry Pi since the RTC will keep the alarm signal
engaged which in turn would prevent future attemps to power the Raspberry Pi down again.

after RTC triggered powerup the RTC needs to be acknowledged

to release the power supply

ds3231.ackPendingAlarm()

Acknowleding the alarm from the application itself us cumbersome as the applications needs to be started explicitely after
an alarm triggered reboot. It may thus be more convenient to acknowledge the alarm at boot time from the Linux boot
scripts. This way any pending alarm will be cleared during boot and neither the user nor any software has to care for pending
alarms which may prevent the ft HAT from powering the Raspberry Pi down.

RTC alarm auto acknowledge

The RTC alarm acknowledge can be automated by adding the command i2cset -y 0 0x68 0x0f 0x00 to the end of the
/etc/rc.local �le e.g. as follows:

#!/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

#

In order to enable or disable this script just change the execution

bits.

#

By default this script does nothing.

Print the IP address

_IP=$(hostname -I) || true

if ["$_IP"]; then

printf "My IP address is %s\n" "$_IP"

fi

ack pending RTC wakeup

/usr/sbin/i2cset -y 0 0x68 0x0f 0x00

exit 0

This will clear the alarm bit on every boot and will this allow to power down afterwards.

3.1.2 Internal EEPROM memory

The usage of the EEPROM is optional. It is not required for proper operation of the ft HAT. However, it can be used to
store helpful system information that gives the Raspberry Pi some additional information about the HAT already at a very
early boot stage. The ft HAT is being shipped with useful contents already stored in the EEPROM. Thus there is usually
no need to touch the programming of this chip.

In order to be able to access the EEPORM its I2C bus may need to be enabled as explained in section 2.2.1.

The optional on board EEPROM can be accessed by the Raspberry Pi via the same I2C port as the RTC. The EEPROM
can be used to store additional con�guration information to be used by the Raspberry Pi at boot time to setup the system.

20 Chapter 3. Programming the ft HAT

The EEPROM is optional and is usually not required2.

Some ft HAT speci�c content of the EEPROM could be stored in �le eeprom_settings.txt like this:

##

Vendor info

128 bit UUID.

product_uuid 392b690a-c74d-4049-8a37-2f2789a7946e

16 bit product id

product_id 0x4711

16 bit product version

product_ver 0x0000

ASCII vendor string (max 255 characters)

vendor "Till Harbaum"

ASCII product string (max 255 characters)

product "fischertechnik HAT"

If board back-powers Pi via 5V GPIO header pins:

2 = board back-powers and can supply the Pi with a minimum of 2A

If back_power=2 then USB high current mode will be automatically

enabled on the Pi

back_power 2

The EEPROM can be read by e.g. the following command:

$ sudo eepflash.sh -r -f=dump.eep -t=24c256 -d=0 -a=50

This will attempt to talk to an eeprom at i2c address 0x50 on bus 0. Make sure there is an

eeprom at this address.

This script comes with ABSOLUTELY no warranty. Continue only if you know what you are doing.

Do you wish to continue? (yes/no): yes

Reading...

32256 Bytes (32 kB, 32 KiB) kopiert, 3,01154 s, 10,7 kB/s

64+0 Datensätze ein

64+0 Datensätze aus

32768 Bytes (33 kB, 32 KiB) kopiert, 3,06013 s, 10,7 kB/s

Closing EEPROM Device.

Done.

Afterwards the 32768 bytes contents of the EEPROM are stored in the �le dump.eep.

To write the aforementioned data from eeprom_settings.txt to the EEPROM the textual representation �rst has to be
converted to bonary:

$ eepmake eeprom_settings.txt eeprom_settings.eep

Opening file eeprom_settings.txt for read

Done reading

Writing out...

Done.

Afterwards the data can be written to the EEPROM:

$ sudo eepflash.sh -w -f=eeprom_settings.eep -t=24c256 -d=0 -a=50

This will attempt to talk to an eeprom at i2c address 0x50 on bus 0. Make sure there is an

eeprom at this address.

This script comes with ABSOLUTELY no warranty. Continue only if you know what you are doing.

2Raspberry Pi HAT EEPROM data: https://github.com/raspberrypi/hats/tree/master/eepromutils

https://github.com/raspberrypi/hats/tree/master/eepromutils

3.1. I2C 21

Do you wish to continue? (yes/no): yes

Writing...

0+1 Datensätze ein

0+1 Datensätze aus

114 Bytes kopiert, 0,600914 s, 0,2 kB/s

Closing EEPROM Device.

Done.

If everything worked correctly the HATs EEPROM con�g will be detected after next boot and shows up under /proc:

$ cat /proc/device-tree/hat/product

fischertechnik HAT

3.1.3 �schertechnik environmental sensor 167358

The environmental sensor from the �schertechnik home automation and IoT kits is based on the Bosch BME680 sensor.

Figure 3.1: The �schertechnik environmental sensor 167358

A matching Python library is available for Raspbian and can be installed:

sudo apt-get install python3-bme680

This library can be used in a Python program as follows3:

import bme680

import time

sensor = bme680.BME680()

sensor.set_humidity_oversample(bme680.OS_2X)

sensor.set_pressure_oversample(bme680.OS_4X)

sensor.set_temperature_oversample(bme680.OS_8X)

sensor.set_filter(bme680.FILTER_SIZE_3)

sensor.set_gas_status(bme680.ENABLE_GAS_MEAS)

sensor.set_gas_heater_temperature(320)

sensor.set_gas_heater_duration(150)

sensor.select_gas_heater_profile(0)

while True:

if sensor.get_sensor_data():

output = "{0:.2f} C,{1:.2f} hPa,{2:.2f} %RH".format(←↩
sensor.data.temperature, sensor.data.pressure, sensor.data.humidity)

if sensor.data.heat_stable:

print("{0},{1} ohms".format(output, sensor.data.gas_resistance))

else:

3The small arrow ←↩ indicates that the line does not end there but continues with the contents of the next line

22 Chapter 3. Programming the ft HAT

print(output)

time.sleep(1)

The output will include temperatures, pressure and humidity:

$ python3 ./bme680.py

30.60 C,1005.56 hPa,27.84 %RH

30.63 C,1005.56 hPa,27.85 %RH,35178.86404694175 ohms

30.69 C,1005.59 hPa,27.82 %RH,49038.265142913355 ohms

30.76 C,1005.61 hPa,27.73 %RH,57726.21732917038 ohms

30.81 C,1005.60 hPa,27.65 %RH,63817.64696100763 ohms

30.86 C,1005.58 hPa,27.57 %RH,68219.75818501839 ohms

...

The ohms output is a value that can be used to determine air quality. Examples for this can be found on github4.

3.1.4 �schertechnik combi sensor 158402

The combi sensor sold by �schertechnik under part number 158402 is based on the Bosch Sensortec BMX055 integrated
circuit.

Figure 3.2: The �schertechnik combi sensor 158402

This integrated circuit bascially combines three seperate units into one case. These three units are a accelerometer, a
gyroscope and a magnetometer (compass). All three are accessible under their own I2C addresses:

BMX055 component I2C address
Accelerometer 0x18

Gyroscope 0x68

Magnetometer 0x10

Using the combi sensor thus shows up like this when being scanned using i2cdectect:

$ i2cdetect -y 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: 10 -- -- -- -- -- -- -- 18 -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

The fact that this gyroscope uses address 0x68 is the main reason why the ft HAT's internal RTC is connected to the
Raspberry Pi's other I2C bus i2c-0 as it uses the same address 0x68 and having both devices on the same bus would let
their addresses collide and making them inaccessible.

4bme680-python indoor-air-quality.py, https://github.com/pimoroni/bme680-python/blob/master/examples/indoor-air-quality.py

https://github.com/pimoroni/bme680-python/blob/master/examples/indoor-air-quality.py

3.1. I2C 23

Python examples for this can be found at github5. However, to make this work with the �schertechnik combi sensor on a
Raspberry Pi we had to comment line 78 like so:

BMX055 Mag address, 0x10(16)

Select Mag register, 0x4B(75)

0x83(121) Soft reset

#bus.write_byte_data(0x10, 0x4B, 0x83)

After this line is commented this python program will read the sensor data:

$ python ./BMX055.py

Acceleration in X-Axis : 2

Acceleration in Y-Axis : -1

Acceleration in Z-Axis : 1018

X-Axis of Rotation : -14

Y-Axis of Rotation : -24

Z-Axis of Rotation : 44

Magnetic field in X-Axis : -34

Magnetic field in Y-Axis : -74

Magnetic field in Z-Axis : -133

A comlete python example from the TX-Pi project (see chapter 4) making use of the BMX055 can be founf in the CFW
apps repository6. It ws written for the �schertechnik combi sensor and runs on the �schertechnik TXT controller as well as
the Raspberry Pi. Its output is depicted in �gure 3.3.

Figure 3.3: BMX055 CFW app

3.1.5 Third party sensors

Besides the sensors sold by �schertechnik the I2C bus has also become popular in the aftermarket. The ft HAT allows to
connect these directly if they follow the connection scheme used by the �schertechnik TXT or TX controllers.

In the following image are the two �schertechnik sensors connected to the 10 pin 3.3V port while a OLED display and a
mini servo adapter are connected to the 6 pin 5V port. All devices show up on bus i2c-1:

$ i2cdetect -y 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

5BMX055 python demo: https://github.com/ControlEverythingCommunity/BMX055/blob/master/Python/BMX055.py
6BMX055 CFW app: https://github.com/harbaum/cfw-apps/blob/master/packages/bmx055/bmx055.py

https://github.com/ControlEverythingCommunity/BMX055/blob/master/Python/BMX055.py
https://github.com/harbaum/cfw-apps/blob/master/packages/bmx055/bmx055.py

24 Chapter 3. Programming the ft HAT

10: 10 11 -- -- -- -- -- -- 18 -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- 3c -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- 76 --

The I2C bus is popular in the Raspberry Pi community and thus drivers and examples can easily be found in the internet
for most common I2C peripherals.

Example code for the 128*64 OLED display showing up at address 0x3c can e.g. found in the Adafruit repository 7.

The mini servo adapter on the other hand is a community project aimed at the ftDuino8 and thus does not come with a
ready to use library for the Raspberry Pi. But the standard I2C command line tools can be used to control the mini servo
adapter. E.g. the command

i2cset -y 1 0x11 0 100

will move the servo connected to servo output 0 of the mini servo adapter to position 100. The same can be achieved from
within python:

$ python3

Python 3.5.3 (default, Sep 27 2018, 17:25:39)

[GCC 6.3.0 20170516] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import smbus

>>> bus = smbus.SMBus(1)

>>> bus.write_byte_data(0x11,0,100)

>>>

This approach works for many simple I2C devices and allows to easily write a python software making use of nearly any I2C
chip.

3.2 Programming the �schertechnik inputs and outputs

The four �schertechnik inputs I1 to I4 and the two motor outputs M1 to M2 are connected directly to the GPIO pins of the
Raspberry Pi as explained in sections 2.3.1 and 2.3.2.

Programming them is thus done using the regular methods of dealing with the GPIOs of the Raspberry Pi. The GPIOs of
the Raspberry Pi can be controlled from most popular programming languages as well as from the command line.

3.2.1 Command line

Command line usage makes use of the /sys �le system. E.g. the following command will activate GPIO12 as input and
then read the state of GPIO12. Since GPIO12 is connected with the input I1 this will read the current state of that input:

echo "12" > /sys/class/gpio/export

echo "in" > /sys/class/gpio/gpio12/direction

cat /sys/class/gpio/gpio12/value

The other inputs I2 to I4 can be evaluated in the same way using 16, 20 and 21 as the GPIO values.

Outputs can be con�gured in a similar way. The following code will bring the motor outputs out of standby:

echo "19" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio19/direction

echo "1" > /sys/class/gpio/gpio19/value

7Adafruit OLED/SSD1306 python library: https://github.com/adafruit/Adafruit_Python_SSD1306
8ftDuino: http://ftduino.de

https://github.com/adafruit/Adafruit_Python_SSD1306
http://ftduino.de

3.2. Programming the �schertechnik inputs and outputs 25

Enabling M1 to turn full speed several GPIO pins need to be driven according to the tables in section 2.3.2:

echo "19" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio19/direction

echo "1" > /sys/class/gpio/gpio19/value

echo "5" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio5/direction

echo "1" > /sys/class/gpio/gpio5/value

echo "6" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio6/direction

echo "0" > /sys/class/gpio/gpio6/value

echo "13" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio13/direction

echo "1" > /sys/class/gpio/gpio13/value

3.2.2 Python

Similar can be done in most programming languages. In python reading I1 via GPIO12 looks like:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(12, GPIO.IN)

print("I1:", GPIO.input(12))

Again, the other inputs I2 to I4 can be evaluated in the same way using 16, 20 and 21 as the GPIO values.

Leaving the standby mode of the motor bridge can be done as follows:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(19, GPIO.OUT)

GPIO.output(19, GPIO.HIGH)

The four pins required to turn the motor M1 can e.g. set in the following manner:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

pins = { 19:GPIO.HIGH, 5:GPIO.HIGH, 6:GPIO.LOW, 13:GPIO.HIGH }

for p in list(pins.keys()):

GPIO.setup(p, GPIO.OUT)

GPIO.output(p, pins[p])

The example above switches the PWM on GPIO13 just �on�. This means that any motor connected to M1 will run full speed
or that any lamp will light at full brighness.

In order to control the speed the PWM features of the Raspberry Pi can be used as shown below:

GPIO.setup(13, self.GPIO.OUT)

pwm = GPIO.PWM(13, 200) # PWM at 200 Hz

pwm.start(50) # run output at 50%

A complete example

The following is a complete example showing how to use Python to enable motor output M1 and dim a lamp connected to
this port.

26 Chapter 3. Programming the ft HAT

m1_dim.py

Dimming a lamp on M1

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

enable TB6612 driver chip

GPIO.setup(19, GPIO.OUT)

GPIO.output(19, GPIO.HIGH)

set mode to clockwise (direction doesn't really matter for the lamp)

GPIO.setup(5, GPIO.OUT)

GPIO.output(5, GPIO.HIGH)

GPIO.setup(6, GPIO.OUT)

GPIO.output(6, GPIO.LOW)

prepare PWM

GPIO.setup(13, GPIO.OUT)

pwm = GPIO.PWM(13, 50) # 50 Hz is sufficient for a lamp

pwm.start(0)

duty = 0

step = 10

while True:

set duty cycle in %

pwm.ChangeDutyCycle(duty)

print("Duty =", duty, "%")

duty += step

if duty == 0 or duty == 100:

step -= step

time.sleep(0.5)

Chapter 4

The TX Pi project

The ft HAT is part of the TX Pi project located under http://tx-pi.de. The TX Pi project aims to integrate the Raspberry Pi
with the �schertechnik construction toy. To achieve this goal the TX Pi project provides:

1. Hardware recommendations and custom hardware designs like the ft HAT for the electrical integration

2. Software con�gurations for the Raspberry Pi suitable to control �schertechnik devices for the software integration

3. Case designs for all major components for the mechanical integration.

4.1 Software and applications

The TX Pi project originates from the �schertechnik community �rmware for the TXT-Controller and shares much of its
software with this and runs it in top of a standard Raspbian1 installation.

Please refer to http://tx-pi.de for further details and installation instructions.

The TX Pi project uses many applications written for the TXT. But it also comes with Raspberry Pi speci�c applications
and even some ready to use ft HAT speci�c ones.

(a) I2C scanner app (b) TX Pi HAT demo app

Figure 4.1: Apps making use of the ft HAT

1Raspbian: https://www.raspberrypi.org/downloads/raspberry-pi-os/

http://tx-pi.de
http://tx-pi.de
https://www.raspberrypi.org/downloads/raspberry-pi-os/

28 Chapter 4. The TX Pi project

These applications are distributed via Github at https://github.com/ftCommunity/tx-pi-apps.

4.2 Display

The TX Pi setup is designed to be used with a lowrez touch screen stacked on top of the Raspberry Pi. Some of these
displays are compatible with the ft HAT and can be used in conjunction with this. See section 2.4 for more details on this.

4.3 Case designs

The TX Pi prject also provides case designs for 3D printed cases to protect the various hardware components as well as
making them mechanically compatible with the �schertechnik system.

Figure 4.2: A complete TX Pi setup consisting of the Raspberry Pi3, the ft HAT and a 3.5� display

Case designs can be found at https://github.com/ftCommunity/tx-pi/tree/master/cases. This includes cases for the Rasp-
berry Pi itself as well as the ft HAT and some displays.

https://github.com/ftCommunity/tx-pi-apps
https://github.com/ftCommunity/tx-pi/tree/master/cases

	Introduction
	Raspberry Pi
	GPIO port
	Raspberry Pi compared to fischertechnik TXT controller

	What's in the package?

	The ft HAT
	Power supply
	Power indicator LED
	Raspberry Pi power consumption
	Power jumper settings
	Power on
	Raspberry Pi auto power off configuration

	I2C
	Enabling I2C on the Raspberry Pi
	External I2C ports
	3.3V I2C port
	5V I2C port

	9V inputs and outputs
	Inputs
	Outputs

	Using a touch display HAT

	Programming the ft HAT
	I2C
	Internal real time clock
	Internal EEPROM memory
	fischertechnik environmental sensor 167358
	fischertechnik combi sensor 158402
	Third party sensors

	Programming the fischertechnik inputs and outputs
	Command line
	Python

	The TX Pi project
	Software and applications
	Display
	Case designs

